3.12.90 \(\int \frac {(a+i a \tan (e+f x))^m}{(c+d \tan (e+f x))^{5/2}} \, dx\) [1190]

3.12.90.1 Optimal result
3.12.90.2 Mathematica [F]
3.12.90.3 Rubi [A] (verified)
3.12.90.4 Maple [F]
3.12.90.5 Fricas [F]
3.12.90.6 Sympy [F]
3.12.90.7 Maxima [F]
3.12.90.8 Giac [F(-2)]
3.12.90.9 Mupad [F(-1)]

3.12.90.1 Optimal result

Integrand size = 30, antiderivative size = 125 \[ \int \frac {(a+i a \tan (e+f x))^m}{(c+d \tan (e+f x))^{5/2}} \, dx=-\frac {i \operatorname {AppellF1}\left (m,\frac {5}{2},1,1+m,-\frac {d (1+i \tan (e+f x))}{i c-d},\frac {1}{2} (1+i \tan (e+f x))\right ) (a+i a \tan (e+f x))^m \sqrt {\frac {c+d \tan (e+f x)}{c+i d}}}{2 (c+i d)^2 f m \sqrt {c+d \tan (e+f x)}} \]

output
-1/2*I*AppellF1(m,5/2,1,1+m,-d*(1+I*tan(f*x+e))/(I*c-d),1/2+1/2*I*tan(f*x+ 
e))*((c+d*tan(f*x+e))/(c+I*d))^(1/2)*(a+I*a*tan(f*x+e))^m/(c+I*d)^2/f/m/(c 
+d*tan(f*x+e))^(1/2)
 
3.12.90.2 Mathematica [F]

\[ \int \frac {(a+i a \tan (e+f x))^m}{(c+d \tan (e+f x))^{5/2}} \, dx=\int \frac {(a+i a \tan (e+f x))^m}{(c+d \tan (e+f x))^{5/2}} \, dx \]

input
Integrate[(a + I*a*Tan[e + f*x])^m/(c + d*Tan[e + f*x])^(5/2),x]
 
output
Integrate[(a + I*a*Tan[e + f*x])^m/(c + d*Tan[e + f*x])^(5/2), x]
 
3.12.90.3 Rubi [A] (verified)

Time = 0.32 (sec) , antiderivative size = 139, normalized size of antiderivative = 1.11, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {3042, 4047, 25, 27, 154, 153}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a+i a \tan (e+f x))^m}{(c+d \tan (e+f x))^{5/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {(a+i a \tan (e+f x))^m}{(c+d \tan (e+f x))^{5/2}}dx\)

\(\Big \downarrow \) 4047

\(\displaystyle \frac {i a^2 \int -\frac {(i \tan (e+f x) a+a)^{m-1}}{a (a-i a \tan (e+f x)) (c+d \tan (e+f x))^{5/2}}d(i a \tan (e+f x))}{f}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {i a^2 \int \frac {(i \tan (e+f x) a+a)^{m-1}}{a (a-i a \tan (e+f x)) (c+d \tan (e+f x))^{5/2}}d(i a \tan (e+f x))}{f}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {i a \int \frac {(i \tan (e+f x) a+a)^{m-1}}{(a-i a \tan (e+f x)) (c+d \tan (e+f x))^{5/2}}d(i a \tan (e+f x))}{f}\)

\(\Big \downarrow \) 154

\(\displaystyle -\frac {i a \sqrt {\frac {a c+a d \tan (e+f x)}{a (c+i d)}} \int \frac {(i \tan (e+f x) a+a)^{m-1}}{(a-i a \tan (e+f x)) \left (\frac {c}{c+i d}+\frac {i d \tan (e+f x)}{i c-d}\right )^{5/2}}d(i a \tan (e+f x))}{f (c+i d)^2 \sqrt {c+d \tan (e+f x)}}\)

\(\Big \downarrow \) 153

\(\displaystyle -\frac {i (a+i a \tan (e+f x))^m \sqrt {\frac {a c+a d \tan (e+f x)}{a (c+i d)}} \operatorname {AppellF1}\left (m,\frac {5}{2},1,m+1,-\frac {d (i \tan (e+f x) a+a)}{a (i c-d)},\frac {i \tan (e+f x) a+a}{2 a}\right )}{2 f m (c+i d)^2 \sqrt {c+d \tan (e+f x)}}\)

input
Int[(a + I*a*Tan[e + f*x])^m/(c + d*Tan[e + f*x])^(5/2),x]
 
output
((-1/2*I)*AppellF1[m, 5/2, 1, 1 + m, -((d*(a + I*a*Tan[e + f*x]))/(a*(I*c 
- d))), (a + I*a*Tan[e + f*x])/(2*a)]*(a + I*a*Tan[e + f*x])^m*Sqrt[(a*c + 
 a*d*Tan[e + f*x])/(a*(c + I*d))])/((c + I*d)^2*f*m*Sqrt[c + d*Tan[e + f*x 
]])
 

3.12.90.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 153
Int[((a_) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_)) 
^(p_), x_] :> Simp[(b*e - a*f)^p*((a + b*x)^(m + 1)/(b^(p + 1)*(m + 1)*Simp 
lify[b/(b*c - a*d)]^n))*AppellF1[m + 1, -n, -p, m + 2, (-d)*((a + b*x)/(b*c 
 - a*d)), (-f)*((a + b*x)/(b*e - a*f))], x] /; FreeQ[{a, b, c, d, e, f, m, 
n}, x] &&  !IntegerQ[m] &&  !IntegerQ[n] && IntegerQ[p] && GtQ[Simplify[b/( 
b*c - a*d)], 0] &&  !(GtQ[Simplify[d/(d*a - c*b)], 0] && SimplerQ[c + d*x, 
a + b*x])
 

rule 154
Int[((a_) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_)) 
^(p_), x_] :> Simp[(c + d*x)^FracPart[n]/(Simplify[b/(b*c - a*d)]^IntPart[n 
]*(b*((c + d*x)/(b*c - a*d)))^FracPart[n])   Int[(a + b*x)^m*Simp[b*(c/(b*c 
 - a*d)) + b*d*(x/(b*c - a*d)), x]^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, 
 d, e, f, m, n}, x] &&  !IntegerQ[m] &&  !IntegerQ[n] && IntegerQ[p] &&  !G 
tQ[Simplify[b/(b*c - a*d)], 0] &&  !SimplerQ[c + d*x, a + b*x]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4047
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
(f_.)*(x_)])^(n_), x_Symbol] :> Simp[a*(b/f)   Subst[Int[(a + x)^(m - 1)*(( 
c + (d/b)*x)^n/(b^2 + a*x)), x], x, b*Tan[e + f*x]], x] /; FreeQ[{a, b, c, 
d, e, f, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d 
^2, 0]
 
3.12.90.4 Maple [F]

\[\int \frac {\left (a +i a \tan \left (f x +e \right )\right )^{m}}{\left (c +d \tan \left (f x +e \right )\right )^{\frac {5}{2}}}d x\]

input
int((a+I*a*tan(f*x+e))^m/(c+d*tan(f*x+e))^(5/2),x)
 
output
int((a+I*a*tan(f*x+e))^m/(c+d*tan(f*x+e))^(5/2),x)
 
3.12.90.5 Fricas [F]

\[ \int \frac {(a+i a \tan (e+f x))^m}{(c+d \tan (e+f x))^{5/2}} \, dx=\int { \frac {{\left (i \, a \tan \left (f x + e\right ) + a\right )}^{m}}{{\left (d \tan \left (f x + e\right ) + c\right )}^{\frac {5}{2}}} \,d x } \]

input
integrate((a+I*a*tan(f*x+e))^m/(c+d*tan(f*x+e))^(5/2),x, algorithm="fricas 
")
 
output
integral((2*a*e^(2*I*f*x + 2*I*e)/(e^(2*I*f*x + 2*I*e) + 1))^m*sqrt(((c - 
I*d)*e^(2*I*f*x + 2*I*e) + c + I*d)/(e^(2*I*f*x + 2*I*e) + 1))*(-I*e^(6*I* 
f*x + 6*I*e) - 3*I*e^(4*I*f*x + 4*I*e) - 3*I*e^(2*I*f*x + 2*I*e) - I)/(-I* 
c^3 + 3*c^2*d + 3*I*c*d^2 - d^3 + (-I*c^3 - 3*c^2*d + 3*I*c*d^2 + d^3)*e^( 
6*I*f*x + 6*I*e) - 3*(I*c^3 + c^2*d + I*c*d^2 + d^3)*e^(4*I*f*x + 4*I*e) - 
 3*(I*c^3 - c^2*d + I*c*d^2 - d^3)*e^(2*I*f*x + 2*I*e)), x)
 
3.12.90.6 Sympy [F]

\[ \int \frac {(a+i a \tan (e+f x))^m}{(c+d \tan (e+f x))^{5/2}} \, dx=\int \frac {\left (i a \left (\tan {\left (e + f x \right )} - i\right )\right )^{m}}{\left (c + d \tan {\left (e + f x \right )}\right )^{\frac {5}{2}}}\, dx \]

input
integrate((a+I*a*tan(f*x+e))**m/(c+d*tan(f*x+e))**(5/2),x)
 
output
Integral((I*a*(tan(e + f*x) - I))**m/(c + d*tan(e + f*x))**(5/2), x)
 
3.12.90.7 Maxima [F]

\[ \int \frac {(a+i a \tan (e+f x))^m}{(c+d \tan (e+f x))^{5/2}} \, dx=\int { \frac {{\left (i \, a \tan \left (f x + e\right ) + a\right )}^{m}}{{\left (d \tan \left (f x + e\right ) + c\right )}^{\frac {5}{2}}} \,d x } \]

input
integrate((a+I*a*tan(f*x+e))^m/(c+d*tan(f*x+e))^(5/2),x, algorithm="maxima 
")
 
output
integrate((I*a*tan(f*x + e) + a)^m/(d*tan(f*x + e) + c)^(5/2), x)
 
3.12.90.8 Giac [F(-2)]

Exception generated. \[ \int \frac {(a+i a \tan (e+f x))^m}{(c+d \tan (e+f x))^{5/2}} \, dx=\text {Exception raised: TypeError} \]

input
integrate((a+I*a*tan(f*x+e))^m/(c+d*tan(f*x+e))^(5/2),x, algorithm="giac")
 
output
Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:sym2poly/r2sym(const gen & e,const 
index_m & i,const vecteur & l) Error: Bad Argument Valuesym2poly/r2sym(con 
st gen &
 
3.12.90.9 Mupad [F(-1)]

Timed out. \[ \int \frac {(a+i a \tan (e+f x))^m}{(c+d \tan (e+f x))^{5/2}} \, dx=\int \frac {{\left (a+a\,\mathrm {tan}\left (e+f\,x\right )\,1{}\mathrm {i}\right )}^m}{{\left (c+d\,\mathrm {tan}\left (e+f\,x\right )\right )}^{5/2}} \,d x \]

input
int((a + a*tan(e + f*x)*1i)^m/(c + d*tan(e + f*x))^(5/2),x)
 
output
int((a + a*tan(e + f*x)*1i)^m/(c + d*tan(e + f*x))^(5/2), x)